66 research outputs found

    Environmental design consideration for courtyards in residential buildings in hot-humid climates: A review

    Get PDF
    This paper discusses environmental design considerations for courtyards in residential buildings in hot-humid climates through a literature review by contrasting with those in hotdry climates. The main focus of discussion is on shading and ventilation effects of courtyards. The results of the analysis revealed that the form and orientation of a courtyard were less significant in its environmental design considerations for the hot-humid climates. Although these factors were reported to be the most important design considerations in the case of hot-dry climates. Mean-while, natural ventilation has been commonly utilized in woodenstructured traditional build-ings in hot-humid climates. However, most of the urban houses in Southeast Asian regions are becoming heavy-weight brick-walled buildings nowadays. It could be seen that the required environmental effects of a courtyard and its design considerations in the case of high thermal mass buildings in hot-humid climates are still uncertain and need to be investigated further

    Technology of crack detection in reinforced concrete structures

    Get PDF
    Some crucial signs of structural failure that are critical for repair would be cracks on the structures as well as constant exposure that can result in severe environmental damage. Being able to detect cracks on structures is becoming an essential aspect of the technology of the construction industry. Destructive Testing and Non-Destructive Testing are the two methods used for structural crack detection. This study focused on the techniques used to detect cracks. Several effective methods to detect cracks were carried out and compared to identify the most suitable method in detecting cracks on structures within the demographics of Malaysia. Image processing techniques (IPTs) through the photogrammetry method, surface crack analysis program and Convolution Neural Network (CNN) were carried out to examine crack detection through measurement and monitoring from images. The distance was determined in this study for the physical properties, using both conductibility and accuracy. The photogrammetry method was able to conduct distance at 0.1 - 40 m, with an accuracy of up to 0.005 mm. Therefore, the surface cracks analysis provided 0.10 mm accuracy, while results on CNN had an accuracy of 0.95 mm (98.22 % and 97.95 % in training and validation). Results from physical properties showed that photogrammetry had the highest accuracy, while CNN has the least accuracy. Hence, this study concluded that Photogrammetry method and Convolution Neural Network (CNN) were both the most effective methods to be used in providing clear information and effective ways to detect crack on structures

    Accurate characterizations of material using microwave T-resonator for solid sensing applications

    Get PDF
    The topic of microwave sensors in enclosures is one of the most active areas in material characterization research today due to its wide applications in various industries. Surprisingly, a microwave sensor technology has been comprehensively investigated and there is an industry demand for an accurate instrument of material characterization such as food industry, quality control, chemical composition analysis and bio-sensing. These accurate instruments have the ability to understand the properties of materials composition based on chemical, physical, magnetic, and electric characteristics. Therefore, a design of the T-resonator has been introduced and investigated for an accurate measurement of material properties characterizations. This sensor is designed and fabricated on a 0.787 mm-thickness Roger 5880 substrate for the first resonant frequency to resonate at 2.4 GHz under unloaded conditions. Various standard dielectric of the sample under test (SUT) are tested to validate the sensitivity which making it a promising low-cost, compact in size, ease of fabrication and small SUT preparation for applications requiring novel sensing techniques in quality and control industries

    Determination of solid material permittivity using T-ring resonator for food industry

    Get PDF
    In this paper, we present a simple design of a T-ring resonator sensor for characterizing solid detection.  The sensor is based on a planar microwave ring resonator and operating at 4.2 GHz frequency with a high-quality factor and sensitivity. An optimization of the T-ring geometry and materials were made to achieve high sensitivity for microwave material characterizations. This technique can determine the properties of solid materials from range of 2 GHz to 12 GHz frequencies. Techniques of current microwave resonator are usually measuring the properties of material at frequencies with a wide range; however, their accuracy is limited. Contrary to techniques that have a narrowband which is normally measuring the properties of materials to a high-accuracy with limitation to only a single frequency. This sensor has a capability of measuring the properties of materials at frequencies of wide range to a high-accuracy. A good agreement is achieved between the simulated results of the tested materials and the values of the manufacturer’s Data sheets. An empirical equation has been developed accordingly for the simulated results of the tested materials. Various standard materials have been tested for validation and verification of the sensor sensitivity. The proposed concept enables the detection and characterization of materials and it has miniaturized the size with low cost, reusable, reliable, and ease of design fabrication with using a small size of tested sample. It is inspiring a broader of interest in developing microwave planar sensors and improving their applications in food industry, quality control and biomedical materials

    State of the Art Intrusion Detection System for Cloud Computing

    Get PDF
    The term Cloud computing is not new anymore in computing technology. This form of computing technology previously considered only as marketing term, but today Cloud computing not only provides innovative improvements in resource utilisation but it also creates a new opportunities in data protection mechanisms where the advancement of intrusion detection technologies  are blooming rapidly. From the perspective of security, Cloud computing also introduces concerns about data protection and intrusion detection mechanism. This paper surveys, explores and informs researchers about the latest developed Cloud Intrusion Detection Systems by providing a comprehensive taxonomy and investigating possible solutions to detect intrusions in cloud computing systems. As a result, we provide a comprehensive review of Cloud Intrusion Detection System research, while highlighting the specific properties of Cloud Intrusion Detection System. We also present taxonomy on the key issues in Cloud Intrusion Detection System area and discuss the different approaches taken to solve the issues. We conclude the paper with a critical analysis of challenges that have not fully solved

    Planar Microwave Sensors for Accurate Measurement of Material Characterization: A Review

    Get PDF
    Microwave sensor is used in various industrial applications and requires highly accurate measurements for material properties. Conventionally, cavity waveguide perturbation, free-space transmission, open-ended coaxial probe, and planar transmission line technique have been used for characterizing materials. However, these planar transmission lines are often large and expensive to build, further restricting their use in many important applications. Thus, this technique is cost effective, easy to manufacture and due to its compact size, it has the potential to produce sensitivity and a high Q-factor for various materials. This paper reviews the common characteristics of planar transmission line and discusses numerous studies about several designs of the microstrip resonator to improve the sensor performance in terms of the sensitivity and accuracy. This technique enables its use for several industrial applications such as agriculture and quality control. It is believed that previous studies would lead to a promising solution of characterizing materials with high sensitivity, particularly in determining a high Q-factor resonator sensor

    Investigation of microwave sensor and integrate with polydimethylsiloxane for medical imaging application

    Get PDF
    The small-sized wideband antenna is one of the antennas used in the medical field to detect body tissue. The antenna's direct contact with the human body causes reflected signal due to the high body coupling, and the narrower bandwidth tends to reduce the data transfer rate in transmission. Therefore, this paper aims to design a wideband antenna with wearable properties operated in the frequency range of 3 GHz to 6 GHz. The antenna is designed with a rectangular-shaped patch with notches and the t-slot shaped partial slot ground. The connected speech test (CST) studio suite software is used to design and optimize the miniature antenna, which measures 24 mm (W) x 38 mm (L) x 0.168 mm (H). The antenna is then embedded with polydimethylsilixane (PDMS) at the top half of the antenna with the dimension 24 mm (W) x 19 mm (L) x 1 mm (H) and also fully occupied. The antenna is configured with the bending capabilities to adapt the human body surface at an angle of 30º. The antenna is having the benefits of small size, cost-effective, and easy to fabricate. The antenna design can effectively detect unusual body tissue, and it safe to be used

    Investigation of Indoor Thermal Environments in a Two-Story Corner Terrace House in Malaysia

    Get PDF
    An effective passive cooling strategy is essential for reducing energy consumption in a residential building without ignoring thermal comfort. Therefore, a field measurement on the thermal performance of a corner terrace house in Kuala Lumpur was conducted to reveal the effectiveness of free running (FR) with four different approaches – no ventilation, full ventilation, day ventilation, and night ventilation. The measurement was done for all bedrooms and family area on the first floor. Also, mixed mode (MM) consisting of natural ventilation, mechanical ventilation with ceiling fan, and cooling with an air-conditioner that represents the actual condition of this house was also measured at living and dining area on the ground floor for comparison. The results reveal that FR from all approaches recorded a mean indoor air temperature of approximately 31 ∘C. The actual thermal condition of the house with MM on the ground floor was recorded at 30 ∘C, 1 ∘C lower than FR approach on the first floor. When compared with relevant international standards on predicting indoor comfort temperature based on outdoor temperature, FR was approximately 5 ∘C higher than predicted temperature based on American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) Standard 55 (2017), 3.4 ∘C higher than European Standard EN15251 and 1.5 ∘C higher than adaptive thermal comfort equation (ACE) for hot-humid climate. In comparison, MM performed better and was closer to relevant international standards, especially ACE for the hot-humid climate. As a conclusion, FR is not suitable for a hot-humid climate such as Malaysia to achieve a comfortable indoor thermal environment without any assisted ventilation use in MM
    corecore